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Biological processes are often performed by a group of proteins rather than by individual proteins, and proteins in a same biolog-
ical group form a densely connected subgraph in a protein-protein interaction network. Therefore, finding a densely connected
subgraph provides useful information to predict the function or protein complex of uncharacterized proteins in the highly con-
nected subgraph. We have developed an efficient algorithm and program for finding cliques and near-cliques in a protein-protein
interaction network. Analysis of the interaction network of yeast proteins using the algorithm demonstrates that 59% of the near-
cliques identified by our algorithm have at least one function shared by all the proteins within a near-clique, and that 56% of the
near-cliques show a good agreement with the experimentally determined protein complexes catalogued in MIPS.
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1. INTRODUCTION

Proteins in a highly connected subgraph of a protein inter-
action network usually share a common function [1]. There-
fore, a highly connected subgraph such as clique and near-
clique in a protein interaction network can be used to predict
the function of uncharacterized proteins in the highly con-
nected subgraph. Finding a clique with a maximum size in a
graph is an NP-hard problem [2]. There are several heuristic
algorithms for the maximum clique problem [2, 3], but most
of them focus on finding a complete subgraph (i.e., clique)
and cannot be used to find near-cliques.

Several topological analysis methods have been devel-
oped for identifying biologically meaningful groups from
protein interaction networks or for assessing the reliability of
protein interactions. A recent program called CFinder [4, 5]
finds overlapping cliques in protein interaction networks. It
allows a protein to belong to more than one clique, but can-
not find near-cliques. Our study shows that the near-cliques
can reveal higher functional coherence than the overlapping
cliques.

The primary focus of this study is to find functional
groups by identifying cliques and near-cliques in protein in-
teraction networks. This study attempts to answer two ques-

tions as follows. “Can we efficiently find all cliques and near-
cliques?” and “does a dense subgraph such as clique and
near-clique indeed represent a functional module or pro-
tein complex?” This study demonstrates that the answers to
both questions are “yes.” This paper presents an algorithm
for finding near-cliques and its application to the interaction
network of yeast proteins.

2. ALGORITHMS FOR FINDING NEAR-CLIQUES

A clique is a complete graph G = (N ,E) in which every node
is connected to every other node in the graph. In our pre-
vious work, we developed a heuristic algorithm and imple-
mented the algorithm in a program called InterViewer [6],
which identifies all edge-disjoint cliques (i.e., cliques that do
not share an edge).

Our experience with protein interaction networks sug-
gests that a near-clique as well as a clique often represents
a biologically meaningful unit such as functional module or
protein complex. A near-clique is almost a clique but is not a
clique due to a few missing edges. We consider near-cliques
of the following basic types, which are biologically meaning-
ful clusters (see Figure 1).
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Figure 1: Near-cliques of types A, B, and C. Proteins outside a clique are represented as shaded nodes.
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Figure 2: (a) After removing nodes p, q, r, and s and their edges, node x forms a near-clique of type A with the remaining nodes. (b) This
graph becomes a near-clique G of type C since indegree(x,G) ≥ 0.5|G|. (c) A big near-clique is too big (e.g., near-clique with more than 50
nodes) and is split into smaller near-cliques (in this example, 3 small near-cliques).

Type A

When a protein outside a clique interacts with two or more
proteins in the clique, the protein and the clique forms a
near-clique.

Type B

When a clique shares a protein with other cliques, the cliques
form a near-clique.

Type C

When two or more cliques interact with a common protein
outside them and the protein has at least two interactions
with each clique, the cliques and the protein form a near-
clique.

The near-cliques of types A and C can be refined using
the indegree and outdegree of a node (there is no change to
the near-clique of type B). For a node x in subgraph G′ ⊂ G,
indegree(x,G′) is the number of the edges connecting node
x to other nodes inG′, and outdegree(x,G′) is the number of
edges connecting node x to other nodes that are in G but not
in G′. We use the definition of a community in a strong sense
[7] to find more near-cliques in a graph.

Definition 1. A subgraphG′ is a community in a strong sense
if indegree(x,G′) > outdegree(x,G′) for every x in G′.

The original definition of a strong community misses
many near-cliques due to a single node in the communities.
For example, in Figure 2(a), node x cannot belong to a near-
clique since indegree(x,G′) = 3 < outdegree(x,G′) = 4.
Likewise, node x in Figure 2(b) cannot belong to a near-
clique because indegree(x,G′) < outdegree(x,G′). Thus,
nodes with only one edge connected to them and their edges
are removed from the graph when we search near-cliques in
the graph. In the graph of Figure 2(a), nodes p, q, r, and s

and their edges are removed. After removing them, node x
and the existing clique form a near-clique of type A. A clus-
ter that satisfies indegree(x,G′) ≥ 0.5|G′| for every x in G′,
where |G′| is the number of nodes inG′, forms a near-clique,
too.The example shown in Figure 2(b) becomes a near-clique
since it satisfies indegree(x,G′) ≥ 0.5|G′| even if it does not
satisfy indegree(x,G′) < outdegree(x,G′).

Therefore, a near-clique G of basic types A and C should
satisfy at least one of the following conditions.

(1) indegree(x,G) ≥ outdegree(x,G) for every x in G.

(2) indegree(x,G) ≥ 0.5|G|.
After finding all edge-disjoint cliques first, we identify

near-cliques as follows. More detailed description of finding
near-cliques are outlined in Algorithms 1 and 2. In the algo-
rithms, cIdx represents the index of a clique.

(1) Assign every node of a clique the index of the clique
containing the node.

(2) When a node of a clique has already an assigned clique
index, assign the index to all nodes of the clique, and
merge two cliques into a near-clique of type B.

(3) When a node x outside a clique forms a basic
near-clique G of type A due to the interactions
with two or more proteins in the clique, and either
indegree(x,G) ≥ outdegree(x,G) or indegree i(x,G) ≥
0.5|G| is true, assign the index of the clique to the
node.

(4) When two or more cliques form a near-clique G due
to two or more interactions with a common pro-
tein outside the cliques, and either indegree(x,G) ≥
outdegree(x,G) or indegree i(x,G) ≥ 0.5|G| is true,
merge the cliques and the protein into a near-clique
of type C. A near-clique is formed by selecting nodes
with the same clique index (cIdx) as those nodes with
cIdx > 0.
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(1) for all node N ∈ G do
(2) N.cldx = 0 {initialize cIdx of all nodes to 0}
(3) end for
(4) curCIdx = 1 {set the current clique index to 1}
(5) for all node N ∈ G do
(6) if (isClique(N)) then {if the node N belongs to a clique}
(7) for all edge E ∈ N do
(8) if (E.target.cIdx > 0) then {if the cIdx of the node connected to N is positive}
(9) for all tmpN ∈ G do {for all nodes in G}
(10) if (tmpN.cIdx = E.target.cIdx) then
(11) tmpN.cIdx = curCIdx {assign curCIdx to tmpN as its cIdx}
(12) end if
(13) end for
(14) else
(15) E.target.cIdx = curCIdx
(16) end if
(17) end for
(18) N.cIdx = curCIdx {set cIdx of N to curCIdx}
(19) curCIdx + + {increase curCIdx by one}
(20) end if
(21) end for

Algorithm 1: AssignNearCliqueIdx.

(1) for all node N ∈ G do
(2) if (N.cIdx = 0) then {find node outside the clique}
(3) qCliqueCnts = ∅{qCliqueCnts the number of edges, which the node N connected with different near-cliques}
(4) for all edge E ∈ N do
(5) if (E.target.cIdx > 0) then
(6) qCliqueCnts[E.target.cIdx] + +
(7) end if
(8) end for
(9) qC value = 0 {initialize cIdx of node N}
(10) for all (c ∈ qCliqueCnts) do
(11) if ((c > 1) and indegree(x,G′) ≥ outdegree(x,G′)) or ((c > 1) and indegree(x,G′) ≥ 0.5∗|G′|) then {a node

outside a clique interacts with multiple nodes in the clique, and either indegree(x,G′) ≥ outdegree(x,G′) or
indegree(x,G′) ≥ 0.5∗|G′|) is true}

(12) if (qC value > 0) then
(13) for all tmpN ∈ G do
(14) if (tmpN.cIdx = qC value) then
(15) tmpN.cIdx = qC value {near-clique of type C}
(16) end if
(17) end for
(18) else
(19) qC value = c {near-clique of type A}
(20) end if
(21) end if
(22) end for
(23) N.cIdx = qC value {assign qC value to node N as its cIdx}
(24) end if
(25) end for

Algorithm 2: ExtendNearClique.

Since the most relevant processes form a group of pro-
teins of moderate size in biological networks [8], we obtain
near-cliques smaller than the maximum size specified by a
user. That is, when a near-clique bigger than the maximum
size is found (e.g., near-clique with more than 50 nodes), it is

split into smaller near-cliques (3 near-cliques in Figure 2(c)).
The way we split a big near-clique is as follows. When our
program finds a big near-clique with the minimum clique
size set to k, we rerun the program on the big near-clique
with the minimum clique size set to k + 1 to find a new



4 Journal of Biomedicine and Biotechnology

Figure 3: Six near-cliques found in yeast protein interaction networks. Proteins in each near-clique share at least one function with other
proteins within the near-clique.

clique and a near-clique with the clique. After removing the
new near-clique from the original, big near-clique, we run
the program again with the minimum clique size set to k.
The big near-clique shown in Figure 2(c) is split into 3 small
near-cliques with at least 4 proteins each.

3. RESULTS AND COMPARISON WITH
EXPERIMENTAL DATA

We tested the algorithms on the data with 8,397 interactions
between 4,380 yeast proteins, which is the combined data of
Ito et al. [9], Uetz et al. [10], and MIPS (http://mips.gsf.de)
with redundant data removed. To every protein in the near-
cliques, we assigned the functional categories of the Func-
tional Catalog (FunCat) version 2.0 [11], which includes 97
functional categories. There are six levels of hierarchy in the
FunCat structure.

In the data with 8,397 interactions between 4,380 yeast
proteins, we found 100 near-cliques with the minimum size
of a clique set to 3 and the maximum size of a near-clique set
to 40. Only one near-clique contains more than 40 proteins,
and so it was split into 17 small near-cliques, resulting in total
116 near-cliques. Figure 3 shows an example of the network
of yeast protein interactions with 6 near-cliques. Proteins in
each near-clique share at least one function with other pro-
teins within the near-clique.

As shown in Table 1, 68 (59%) out of the 116 near-
cliques have at least one function shared by all the pro-
teins in the near-cliques (100% sharing), and 39 near-
cliques have a function shared by more than 50% of the
proteins in the near-cliques, supporting data are available
at http://wilab.inha.ac.kr/ppi/homepage.mht. Only 9 near-
cliques have no function shared by >50% of the proteins in
the near-cliques. As shown in Figure 4, the functional coher-
ence of each near-clique is high. The functional coherence
was computed by the ratios of the number of proteins hav-
ing a specific functional category to the group size (i.e., the
number of proteins in the group).

Interestingly, most near-cliques found by our algorithm
belong to multifunctional categories. For example, two func-
tional categories are common to all the proteins in a near-
clique of Figure 5. As shown in Table 2, the near-clique iden-
tified as group 93 by our program is involved in both stress
response (functional category 32.01) and biosynthesis of vi-
tamins, cofactors, and prosthetic groups (functional category
01.07.01).

Near-cliques may correspond to protein complexes
in addition to functional modules. So, we compared
the near-cliques identified by our algorithms with
known yeast protein complexes, which are cataloged in
the MIPS Saccharomyces cerevisiae genome database
(http://mips.gsf.de/genre/proj/yeast). For each near-clique,
we found a best-matching protein complex by minimizing
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Table 1: Functional groups identified from the yeast protein interaction data. 68 modules have at least one function shared by all the proteins
in the groups (100% sharing), and 39 groups have a function shared by more than 50% of the proteins in the groups. Only 9 groups have
no function shared by >50% of the proteins in the group. This table shows only one function with the highest functional coherence in each
group. All the functions shared by more than 50% of the proteins in each group are available at http://wilab.inha.ac.kr/ppi/homepage.mht.

Group ID Proteins in
the group

Common function
(proportion of

proteins with the
function)

Group ID
Proteins in
the group

Common
function

(proportion
of proteins

with the
function)

Group ID
Proteins in
the group

Common
function

(proportion of
proteins with
the function)

1 3 11.02.02 (100%) 40 3
10.01.03.03

(100%)
79 3 42.01 (100%)

2 5 14.01 (100%) 41 3
20.09.13
(100%)

80 3
30.01.05.01

(66.7%)

3 4 42.10 (100%) 42 5 42.01 (80%) 81 3 42.04.03 (100%)

4 12 42.10.05 (75%) 43 5 40.01 (80%) 82 4 42.25 (100%)

5 4 01.03.16.01 (75%) 44 3 14.10 (100%) 83 3 none

6 6
11.02.03.04

(100%)
45 8

12.04.01
(87.5%)

84 3
01.06.01.07.11

(100%)

7 4
14.07.02.01

(100%)
46 4

14.13.01.01
(100%)

85 3
32.01.07
(66.7%)

8 6 10.03.01 (100%) 47 4
10.01.05.01

(100%)
86 4

34.11.03.07
(100%)

9 22 11.04.01 (63.6%) 48 3
10.01.05.01

(100%)
87 3 20.09.07 (100%)

10 21 20.09 (66.7%) 49 6
20.09.04
(100%)

88 3 02.19 (100%)

11 3 none 50 4 32.01 (100%) 89 3 16.19.03 (100%)

12 8
11.04.03.05

(100%)
51 3

10.01.03
(100%)

90 4 2.07 (75%)

13 11 10.03.01 (63.6%) 52 3
12.04.03
(66.7%)

91 3 16.03.01 (100%)

14 7 10.03.01 (76.5%) 53 13
20.09.07.03

(61.5%)
92 3

10.01.05.01
(100%)

15 4 1.03 (50%) 54 8
11.02.03.01

(100%)
93 7 32.01 (100%)

16 5
01.05.01.03.02.02

(100%)
55 4

20.09.07.03
(100%)

94 3 40.20 (66.7%)

17 3 16.03.01 (100%) 56 5 none 95 3
34.01.01.03

(100%)

18 4 11.04.02 (100%) 57 5
20.09.01
(100%)

96 4
43.01.03.05

(100%)

19 5 40.01 (80%) 58 5
20.09.18
(80%)

97 3 14.04 (100%)

20 3 18.02.01 (60%) 59 5
01.04.01
(80%)

98 4 20.09.13 (100%)

21 23
43.01.03.05

(82.6%)
60 3

43.01.03.05
(100%)

99 3
16.03.01
(66.7%)

22 4 32.01 (50%) 61 5
11.04.01
(100%)

100 12
43.01.03.05

(91.7%)

23 4
11.02.03.04.01

(100%)
62 5

20.09.10
(100%)

101 6
10.03.01.01.03

(100%)

24 4
14.13.01.01

(100%)
63 3

43.01.03.09
(66.7%)

102 9 16.01 (88.9%)

25 36 none 64 3
11.02.03.04

(100%)
103 7

43.01.03.05
(100%)
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Table 1: Continued.

Group ID Proteins in
the group

Common function
(proportion of

proteins with the
function)

Group ID
Proteins in
the group

Common
function

(proportion
of proteins

with the
function)

Group ID
Proteins in
the group

Common
function

(proportion of
proteins with
the function)

26 4
20.09.07.03

(100%)
65 3

34.11.03.13
(100%)

104 5
43.01.03.05

(80%)

27 10 42.04 (50%) 66 5
16.19.03
(80%)

105 11
20.09.07.03

(100%)

28 11
14.13.01.01

(100%)
67 4 11.04 (100%) 106 7

10.03.04.03
(85.7%)

29 6
43.01.03.05

(83.3%)
68 3

10.01.09.05
(66.7%)

107 6 40.01 (50%)

30 8 12.04 (100%) 69 4
01.04.01
(100%)

108 9
10.03.01.01

(88.9%)

31 4 10.03.01 (100%) 70 3
11.06.01
(100%)

109 3
20.09.07.27

(100%)

32 4 12.04.02 (75%) 71 6 none 110 3 20.09.14 (100%)

33 3
34.01.01.01

(100%)
72 3

20.09.13
(100%)

111 12
43.01.03.05

(100%)

34 5 none 73 3
11.02.03.04

(100%)
112 5

10.03.04.05
(100%)

35 3 11.04.01 (66.7%) 74 3
42.10.03
(100%)

113 5
10.03.04.05

(100%)

36 31
11.02.03.04

(80.6%)
75 3 none 114 5 42.10.03 (80%)

37 4 16.03.01 (100%) 76 7
20.09.04
(100%)

115 3 none

38 6
43.01.03.05

(100%)
77 3 none 116 5

43.01.03.05
(80%)

39 7 14.04 (57.1%) 78 3
10.03.02
(100%)

— — —

Table 2: Functional annotation of group 93 shown in Figure 5. The
code represents functional category.

Group Protein Protein functional categories

Group 93

YFL059w 32.01 01.07.01

YMR096w 32.01 01.07.01

YMR322c 32.01.07 01.07

YNL334c 32.01 01.07.01

YMR095c 32.01 01.07.01

YNL333w 32.01 01.07.01

YFL060c 32.01 01.07.01

the probability of a random overlap between the two, using
the following equation [4, 5]:

Poverlap =

(
n2

k

)(
N − n2

n1 − k
)

(
N
n1

) , (1)

where n1, n2 are the sizes of a known protein complex and
a computed module, k is the number of their common pro-
teins, and N is the size of the network.

As shown in Table 3, 65 near-cliques (56% of the total
116 near-cliques) identified by our algorithm show a good
agreement (ln(Poverlap) < −14) with the protein complexes
cataloged in MIPS.

To compare the functional coherence of the groups found
by our program with that of cliques found by CFinder, we
tested both programs on the same dataset. 75.9% of the
groups identified by our program have at least two functional
categories shared by all the proteins in the groups, whereas
63.1% of the groups identified by CFinder have at least two
functional categories shared by all the proteins in the groups
(Table 4). This result indicates that our program finds groups
with stronger functional coherence than CFinder.

Table 5 shows the actual running times of our program
and CFinder on three datasets of yeast protein interactions.
Our program is faster than CFinder on all datasets, and the
difference in speed becomes more obvious as the dataset be-
comes bigger.
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Figure 4: The functional coherence in each of the 116 groups, computed as the ratio of the number of proteins having a specific functional
category to the number of proteins in the group. The black, white, and grey bars represent functional categories with the ratios ≥ 0.5 and
the maximum number of such ratios is limited to 3 in each group.

YFL059w YMR096w

YFL060c

YNL334c

YMR095c YNL333w

YMR322c

Figure 5: Group 93 identified as a near-clique by our algorithm.

4. CONCLUSION

Identifying hidden topological structures of protein interac-
tion networks often unveil biologically relevant functional
groups and structural complexes. We developed an efficient
heuristic algorithm for finding cliques and near-cliques in
protein interaction networks. From the interaction data of
yeast proteins, the algorithm identified 116 near-cliques.
Comparison with the experimental data showed that 59%
of the near-cliques have at least one function shared by
all the proteins within a near-clique, and that 56% of the
near-cliques show a good agreement with known protein
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Table 3: The near-cliques matched with experimentally determined protein complexes cataloged in MIPS. The overlap column represents
the number of proteins common to the near-cliques and the protein complexes.

Group ID Group size
MIPS tag of

protein
complex

Protein
complex size

Overlap
(common
proteins)

ln(Poverlap) Main functional categories

3 4 295 2 2 −14.28 42.10/43.01.03.09

5 4 510.190.110 13 3 −16.32 01.03.16.01

6 6 320 8 4 −23.40 11.02.03.04/10.01.09.05/16.03.01

9 22 550.1.149 88 21 −84.60 11.04.01/12.01

12 8 550.1.148 35 8 −39.49 11.04.03.05/16.03.03/11.04.03.01

13 11 550.1.7 10 8 −47.55 10.03.01/14.01/16.01

14 17 140.30 32 11 −46.65 10.03.01

16 4 550.1.44 9 3 −17.55 14.07.02.02/01.05.01.03.02.02

17 3 410.40.20 3 3 −23.36 16.03.01 /16.03.01 /10.01.05.01/10.01.03.05

/10.01.03.01

18 4 440.30.30 11 4 −24.56 11.04.02

21 23 470.20 5 5 −26.71 43.01.03.05/34.11.03.07

23 4 510.160 4 4 −30.36 11.02.03.04.01/01.05.04

24 4 360.10 36 4 −19.38 14.13.01.01/14.07.11

25 36 550.1.138 36 11 −34.43 none

26 4 550.2.317 3 3 −21.98 20.09.07.03/20.09.07.05/14.10

27 10 130 8 4 −20.77 42.04/16.01

28 11 60 11 11 −74.71 14.13.01.01/10.03.01.01.11/14.07.05 /14.10

/16.01 /16.19.03

29 6 120.20 4 4 −27.65 43.01.03.05/40.01/34.07.01/34.01/32.01.09

/11.02.02/10.03.01.01.09/10.03.01.01.03

30 8 550.1.142 25 4 −16.68 12.04

31 4 140.30.30.30 3 2 −13.18 10.03.01/42.04/20.09

32 3 510.20 4 3 −21.98 12.04.02/12.01.01

36 31 230.20.20 16 14 −67.99 11.02.03.04/10.01.09.05

37 4 410.30 16 4 −22.85 16.03.01/10.01.03.03/10.01.03.01/16.19.03

38 6 550.1.81 7 5 −32.29 43.01.03.05/20.09.16.09.03/16.01/20.09.07.27

/10.03.03

40 3 410.30 16 3 −17.03 10.01.03.03/10.01.09.05 /11.02.03.04/16.19.03

/34.11.03.07

44 3 350.10.10 2 2 −14.97 14.10/01.04.01/14.13/16.19.03/20.01.10/20.09.04

45 8 500.10.40 7 6 −38.44 12.04.01

47 4 410.40.30 5 3 −19.67 10.01.05.01/10.01.03.05/10.03.01.03/16.03.01

/18.02.01

48 3 410.40.90 3 3 −23.36 10.01.05.01/10.01.03.05

49 6 290.20.10 5 5 −35.34 20.09.04/20.01.10/14.04/42.16

50 4 550.1.29 16 4 −22.85 32.01/2.19/01.05.01.03.01/01.05.01.01.01

52 3 550.3.82 2 2 −14.97 12.04.03/01.03.16.01

53 13 260.30.20 11 6 −30.15 20.09.07.03

54 8 510.40.10 13 7 −40.63 11.02.03.01/11.02.03.04

58 5 550.2.436 2 2 −13.77 20.09.18

59 5 470.10 6 5 −35.34 01.04.01 /01.05.04/14.07.03/30.01.05

/43.01.03.05/11.02.03.04
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Table 3: Continued.

Group ID Group size
MIPS tag of

protein
complex

Protein
complex size

Overlap
(common
proteins)

ln(Poverlap) Main functional categories

61 5 440.12.10 7 5 −34.08 11.04.01/01.03.16.01

64 3 400 10 3 −18.57 43.01.03.09/01.06.01.07.11

66 5 550.1.212 35 5 −24.44 16.19.03/10.01.05.01/01.04.01/16.03.01

67 4 510.190.40 5 4 −28.75 11.04/01.03.16.01/11.02.03.04/34.11.03.07

70 3 440.12.30 3 3 −23.36 11.06.01/11.04.01

72 3 550.1.84 7 3 −19.80 20.09.13/16.01/14.10/20.09.18

74 3 510.180.30.10 2 2 −14.97 42.10.03/32.01.09/16.03.03/10.03.01.03

/10.01.09.05/10.01.05.01

76 7 290.10 9 7 −46.58 20.09.04/20.01.10/14.04/20.03

80 3 550.2.527 2 2 −14.97 30.01.05.01/18.02.01/18.01.01/14.07.03

81 3 260.90 6 3 −20.36 42.04.03/20.09.14/16.07/14.10/16.01/43.01.03.05

82 4 260.80 4 4 −30.35 42.25/20.09.13/20.09.07/20.09.07/20.09.16.09.03

86 4 510.180.20 7 4 −26.80 34.11.03.07/10.01.05.03.01/10.01.05.01/10.03.02

87 3 550.1.74 4 3 −21.97 20.09.07/42.04.03

89 3 550.2.321 6 3 −20.36 16.19.03 /14.13.01.01/14.07.11/01.04.01

91 3 550.2.317 3 3 −23.36 16.03.01/11.02.01/11.02.02

95 3 90.30 2 2 −14.97 34.01.01.03/14.10

96 4 110 4 4 −30.35 43.01.03.05/11.02.03.04/16.19.01/30.01.09.07

/14.07.03/01.04.01

97 3 260.30.30.20 2 2 −14.97 14.04 /20.09.07.05

100 12 140.20.30 7 4 −20.60 43.01.03.05/42.04/40.01

101 6 550.3.12 7 4 −24.09 10.03.01.01.03/43.01.03.05/30.01.05.01/14.07.03

102 9 445.20 4 4 −25.52 16.01/16.19.03/10.03.01.01.03/14.13.01.01/14.10

/14.07.05

103 7 140.20.20 25 5 −23.21 43.01.03.05/40.01/16.01/42.04.03/20.09.18.09.01

104 5 140.20.30 7 4 −25.19 43.01.03.05/42.01/32.01.03/20.09.18.09.01

105 11 260.60 10 10 −66.33 20.09.07.03

106 7 270.20.40 4 3 −18.42 10.03.04.03

108 9 133.10 10 7 −41.79 10.03.01.01/18.02.01

110 3 140.30.30 14 3 −17.46 20.09.14/10.03.05.01/10.03.04.09/10.03.01.01.11

/02.45.11

112 5 270.20.20 3 3 −21.05 10.03.04.05/16.01

113 5 270.20.10 3 3 −21.05 10.03.04.05

Table 4: Comparison of our method and CFinder in terms of the
number of functional categories shared by all the proteins in the
groups.

Functional categories
common to all proteins
in the group

Groups found by
our program

Groups found by
CFinder

< 1 9 (7.8%) 35 (18.0%)

= 1 19 (16.3%) 37 (18.9%)

= 2 27 (23.3%) 35 (18.0%)

> 2 61 (52.6%) 88 (45.1%)

Total 116 (100%) 195 (100%)

Table 5: Running times of the programs on 3 data sets of yeast pro-
tein interactions on a Pentium IV 3.0 GHz processor with 512 MB
memory.

Program
MIPS data
(4874 nodes
15660 edges)

DIP data
(4932 nodes
17491 edges)

BOND data
(18692 nodes
59516 edges)

Our program 10.06 s 13.06 s 1 m 06.63 s

CFinder 17.45 s 24.33 s 2 m 22.46 s

MIPS data: PPI 180105.tab from MIPS (1/18/2005).

DIP data: yeast20071104.lst from DIP (11/04/2007).

BOND data: data from BOND (11/9/2007).
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complexes,which are cataloged in the MIPS Saccharomyces
cerevisiae genome database.
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